Javascript is currently not supported, or is disabled by this browser. Please enable Javascript for full functionality.

Skip to Main Content
Columbia Campus    
2019-2020 Graduate Studies Bulletin 
    
 
  Nov 21, 2024
 
2019-2020 Graduate Studies Bulletin

Sciences, M.A.T. (Secondary Education)



The MAT in Science is offered jointly by the College of Education and the College of Arts and Sciences. This degree includes options in biology, chemistry, earth science, natural sciences, and physics. The MAT in Science is designed specifically for candidates who wish to become certified in a secondary education area of science (i.e., biology, chemistry, physics, or science).

Learning Outcomes

  • Content. Teachers of science understand and can articulate the knowledge and practices of contemporary science. They can interrelate and interpret important concepts, ideas, and applications in their fields of licensure; and can conduct scientific investigations. To show that they are prepared in content, teachers of science must demonstrate that they (a) understand and can successfully convey to students the major concepts, principles, theories, laws, and interrelationships of their fields of licensure and supporting fields as recommended by the National Science Teachers Association; (b) understand and can successfully convey to students the unifying concepts of science delineated by the National Science Education Standards; (c) understand and can successfully convey to students important personal and technological applications of science in their fields of licensure; (d) understand research and can successfully design, conduct, report and (e) evaluate investigations in science; and understand and can successfully use mathematics to process and report data, and solve problems, in their field(s) of licensure.
  • Nature of Science. Teachers of science engage students effectively in studies of the history, philosophy, and practice of science. They enable students to distinguish science from nonscience, understand the evolution and practice of science as a human endeavor, and critically analyze assertions made in the name of science. To show they are prepared to teach the nature of science, teachers of science must demonstrate that they (a) understand the historical and cultural development of science and the evolution of knowledge in their discipline; (b) understand the philosophical tenets, assumptions, goals, and values that distinguish science from technology and from other ways of knowing the world; and (c) engage students successfully in studies of the nature of science including, when possible, the critical analysis of false or doubtful assertions made in the name of science.
  • Inquiry. Teachers of science engage students both in studies of various methods of scientific inquiry and in active learning through scientific inquiry. They encourage students, individually and collaboratively, to observe, ask questions, design inquiries, and collect and interpret data in order to develop concepts and relationships from empirical experiences. To show that they are prepared to teach through inquiry, teachers of science must demonstrate that they (a) understand the processes, tenets, and assumptions of multiple methods of inquiry leading to scientific knowledge; and (b) engage students successfully in developmentally appropriate inquiries that require them to develop concepts and relationships from their observations, data, and inferences in a scientific manner.
  • Issues. Teachers of science recognize that informed citizens must be prepared to make decisions and take action on contemporary science- and technology-related issues of interest to the general society. They require students to conduct inquiries into the factual basis of such issues and to assess possible actions and outcomes based upon their goals and values. To show that they are prepared to engage students in studies of issues related to science, teachers of science must demonstrate that they (a) understand socially important issues related to science and technology in their field of licensure, as well as processes used to analyze and make decisions on such issues; and (b) engage students successfully in the analysis of problems, including considerations of risks, costs, and benefits of alternative solutions; relating these to the knowledge, goals and values of the students.
  • General Skills of Teaching. Teachers of science create a community of diverse learners who construct meaning from their science experiences and possess a disposition for further exploration and learning. They use, and can justify, a variety of classroom arrangements, groupings, actions, strategies, and methodologies. To show that they are prepared to create a community of diverse learners, teachers of science must demonstrate that they (a) vary their teaching actions, strategies, and methods to promote the development of multiple student skills and levels of understanding; (b) successfully promote the learning of science by students with different abilities, needs, interests, and backgrounds; (c) successfully organize and engage students in collaborative learning using different student group learning strategies; (d) successfully use technological tools, including but not limited to computer technology, to access resources, collect and process data, and facilitate the learning of science; (e) understand and build effectively upon the prior beliefs, knowledge, experiences, and interests of students; and (f) create and maintain a psychologically and socially safe and supportive learning environment. (optional to address this standard in the NSTA report)
  • Curriculum. Teachers of science plan and implement an active, coherent, and effective curriculum that is consistent with the goals and recommendations of the National Science Education Standards. They begin with the end in mind and effectively incorporate contemporary practices and resources into their planning and teaching. To show that they are prepared to plan and implement an effective science curriculum, teachers of science must demonstrate that they (a) understand the curricular recommendations of the National Science Education Standards, and can identify, access, and/or create resources and activities for science education that are consistent with the standards; and (b) plan and implement internally consistent units of study that address the diverse goals of the National Science Education Standards and the needs and abilities of students.
  • Science in the Community. Teachers of science relate their discipline to their local and regional communities, involving stakeholders and using the individual, institutional, and natural resources of the community in their teaching. They actively engage students in science-related studies or activities related to locally important issues. To show that they are prepared to relate science to the community, teachers of science must demonstrate that they (a) identify ways to relate science to the community, involve stakeholders, and use community resources to promote the learning of science; and (b) involve students successfully in activities that relate science to resources and stakeholders in the community or to the resolution of issues important to the community.
  • Assessment. Teachers of science construct and use effective assessment strategies to determine the backgrounds and achievements of learners and facilitate their intellectual, social, and personal development. They assess students fairly and equitably, and require that students engage in ongoing self-assessment. To show that they are prepared to use assessment effectively, teachers of science must demonstrate that they (a) use multiple assessment tools and strategies to achieve important goals for instruction that are aligned with methods of instruction and the needs of students; (b) use the results of multiple assessments to guide and modify instruction, the classroom environment, or the assessment process; and (c) use the results of assessments as vehicles for students to analyze their own learning, engaging students in reflective self-analysis of their own work.
  • Safety and Welfare. Teachers of science organize safe and effective learning environments that promote the success of students and the welfare of all living things. They require and promote knowledge and respect for safety, and oversee the welfare of all living things used in the classroom or found in the field. To show that they are prepared, teachers of science must demonstrate that they (a) understand the legal and ethical responsibilities of science teachers for the welfare of their students, the proper treatment of animals, and the maintenance and disposal of materials; (b) know and practice safe and proper techniques for the preparation, storage, dispensing, supervision, and disposal of all materials used in science instruction; (c) know and follow emergency procedures, maintain safety equipment, and ensure safety procedures appropriate for the activities and the abilities of students; and (d) treat all living organisms used in the classroom or found in the field in a safe, humane, and ethical manner and respect legal restrictions on their collection, keeping, and use.
  • Professional Growth. Teachers of science strive continuously to grow and change, personally and professionally, to meet the diverse needs of their students, school, community, and profession. They have a desire and disposition for growth and betterment. To show their disposition for growth, teachers of science must demonstrate that they (a) engage actively and continuously in opportunities for professional learning and leadership that reach beyond minimum job requirements; (b) reflect constantly upon their teaching and identify ways and means through which they may grow professionally; (c) use information from students, supervisors, colleagues and others to improve their teaching and facilitate their professional growth; and (d) interact effectively with colleagues, parents, and students; mentor new colleagues; and foster positive relationships with the community.

Degree Requirements (45 Hours)

Specific course requirements vary by area, but all must include a minimum of the following:

Content Area Courses (15-21 Hours)


Professional Education Courses (9 Hours)


Methods Courses (6 Hours)


  • At least 6 hours of graduate methods courses, one of which must be a technology course.

Internship and Seminar (15 Hours)


Note


Each candidate must successfully complete a comprehensive examination as determined by the appropriate M.A.T. degree committee.