Javascript is currently not supported, or is disabled by this browser. Please enable Javascript for full functionality.

Skip to Main Content
Columbia Campus    
2019-2020 Undergraduate Studies Bulletin 
    
 
  Nov 21, 2024
 
2019-2020 Undergraduate Studies Bulletin

Chemical Engineering, BSE


Return to Programs by College/School Return to: Programs by College/School


Program Educational Objectives

Within six years of graduation, our graduates are expected to achieve one or more of the following milestones:

  • Advance professionally in the chemical process industries or in their chosen career field.
  • Earn advanced degrees in chemical engineering (or a related technical discipline), medicine, law, or business.
  • Attain leadership positions in today’s rapidly changing, increasingly technological, global society.

Learning Outcomes

  • Students will apply knowledge of mathematics and chemistry to typical problems encountered in chemical engineering practice.
  • Students will apply knowledge of engineering to typical problems encountered in chemical engineering practice.
  • Students will demonstrate the use of chemical engineering science fundamentals in developing  solutions of problems typical of those encountered in chemical engineering practice. 
  • Students will be able to design and conduct laboratory experiments, as well as to analyze and interpret data using factorial design methods.
  • Students will be able to use chemical process simulators and other techniques, skills, and modern engineering tools necessary for chemical engineering practice.
  • Students will be able to design a chemical engineering system, unit, or chemical process to meet desired needs.
  • Students will be able to present technical material through oral presentations with visual aids.
  • Students will be able to present technical material including analysis and conclusions through technical reports.
  • Students will be able to work in multi-functional teams.
  • Students will be able to find information and to learn independently.
  • Students will demonstrate knowledge of and  adherence to professional and ethical responsibility. 
  • Students will be able to describe how economic, political, and social issues affect and are affected by the chemical engineering profession. 
  • Students will comprehend the topics and ideas of familiar subjects in a foreign language. 

Academic Standards

Program GPA

Program GPA requirement policies are described in the College of Engineering and Computing section of this bulletin. For the purpose of these policies, the following courses are used to determine the Program GPA for the Chemical Engineering B.S.E. program: all Lower Division Engineering courses, all Chemical Engineering Major courses, and all Engineering Electives.

Major Map

A major map is a layout of required courses in a given program of study, including critical courses and suggested course sequences to ensure a clear path to graduation.

Major maps are only a suggested or recommended sequence of courses required in a program of study. Please contact your academic advisor for assistance in the application of specific coursework to a program of study and course selection and planning for upcoming semesters.

 

Chemical Engineering, BSE

 


Degree Requirements (131-138 hours)

See College of Engineering and Computing  for entrance requirements, progression requirements, and special academic opportunities.

  1. Carolina Core (34-43 hours)
  2. College Requirements (0 hours)
  3. Program Requirements (64-65 hours)
  4. Major Requirements (33 hours)

1. Carolina Core (34-43 hours)


Effective, Engaged, and Persuasive Communication: Written — CMW (6 hours)

Analytical Reasoning and Problem Solving — ARP (8 hours) 

must be passed with a grade of C or higher

Scientific Literacy — SCI (8 hours)

must be passed with a grade of C or higher

Global Citizenship and Multicultural Understanding: Foreign Language — GFL (0-6 hours)

Score two or better on foreign language placement test; or complete the 109 and 110 courses in FREN, GERM, LATN or SPAN; or complete the 121 course in another foreign language.

​Global Citizenship and Multicultural Understanding: Historical Thinking — GHS (3 hours) 

Global Citizenship and Multicultural Understanding: Social Sciences — GSS (3 hours) 

Aesthetic and Interpretive Understanding —  AIU (3 hours)

Effective, Engaged, and Persuasive Communication: Spoken Component* — CMS (0-3 hours)

Information Literacy* —  INF (0-3 hours)

Values, Ethics, and Social Responsibility* — VSR (0-3 hours)

*Carolina Core Stand Alone or Overlay Eligible Requirements — Overlay-approved courses offer students the option of meeting two Carolina Core components in a single course. A maximum of two overlays is allowed. The total Carolina Core credit hours for this program must add up to a minimum of 34 hours.

2. College Requirements (0 hours)


No college-required courses for this program.

3. Program Requirements (64-65 hours)


Supporting Courses (64-65 hours)

Foundational Courses (20 hours): Complete all of the following:

Chemistry Electives (6 hours): A list of acceptable Chemistry Elective courses is maintained in the department office and on its website. These include the following:

Chemistry Laboratory Electives (2 hours): A list of acceptable Chemical Laboratory Elective courses is maintained in the department office and on its website. These include the following:

Computer Programming Elective (3-4 hours): Choose one from the following:

Lower Division Engineering (14 hours): Complete all of the following:

Professional Development Elective (1 hour): A list of acceptable Professional Development Elective courses is maintained in the department office and on its website. The list includes the following:

Engineering Electives (6 hours): A list of acceptable Engineering Elective courses is maintained in the department office and on its website. The list includes the following:

Technical Electives (9 hours): A list of acceptable Technical Elective courses is maintained in the department office and on its website. The list includes the following:

Liberal Arts Electives (3 hours): At least one course used to satisfy the Liberal Arts Elective or a Carolina Core AIU, CMS, GHS, GSS, VSR requirement must be either at a) the 300-level or above and in the same field of study as one of the other courses, or b) 270 or above in the field of ENGL.  Liberal Arts Electives include the following:

4. Major Requirements (33 hours)


Major Courses (33 hours)

Concentrations (15 hours) optional

Students may pursue any of the following concentrations by choosing specified engineering, technical, and chemistry elective courses to fulfill degree requirements:

  • Concentration in Biomolecular Engineering
  • Concentration in Energy
  • Concentration in Interdisciplinary Engineering
  • Concentration in Materials
  • Concentration in Environmental Engineering
  • Concentration in Numerical Methods and Computing

To fulfill the requirements for any concentration, a student must complete five courses (15 credit hours) in one area. Consult the department website or advising handbook for the most up to date list of approved concentration courses. Although these courses are designated as electives in the B.S.E. curriculum in chemical engineering, certain courses in the lists are designated as “required” with respect to fulfilling concentration requirements. Also note that the lists may not include all of the prerequisites for some of the listed courses.

Concentration in Biomolecular Engineering (15 hours)

*BIOL 101 and 102 are prerequisites for BIOL 302. Multiple distinct 389/589 courses may be counted.

Concentration in Energy (15 hours)

*Multiple distinct 389/589 courses may be counted.

Concentration in Interdisciplinary Engineering (15 hours)

Concentration in Materials (15 hours)

*Multiple distinct 389/589 courses may be counted.

Concentration in Environmental Engineering (15 hours)

Concentration in Numerical Methods and Computing (15 hours)

B.S.E. with Distinction

The B.S.E. with Distinction is available to students majoring in chemical engineering who wish to participate in significant research and/or design activities in chemical engineering with a faculty mentor.

A minimum GPA of 3.50 in major courses, 3.50 in all engineering courses, and 3.50 overall is required at the time the student applies to enter the departmental undergraduate research track.

The student should apply to enter the departmental undergraduate research track and choose the members of the thesis committee as early as possible but in all cases at least one year before submitting and defending the thesis. The thesis committee will consist of a thesis advisor, who must be a tenure-track faculty member in chemical engineering, and two other tenure-track or research faculty members in chemical engineering or in any other department.

By the end of the semester in which the student is admitted into the research track, a short description of the research must be agreed upon by the thesis committee and the student, and filed in the college office. Projects involving research and/or design are acceptable. The design projects or research projects for ECHE 465, 466, 567, or other courses are not acceptable as the thesis. The student must also choose three credit hours of engineering or technical elective courses related to the thesis topic. The course(s) must be approved by the thesis committee and completed by the student at least one semester before the thesis is submitted and defended.

Before submitting and defending the thesis, the student must have completed three credit hours of ECHE 499 - Special Problems under the thesis advisor, preferably one credit hour per semester. During the semester in which the thesis is submitted and defended the student must also complete three credit hours of ECHE 497 - Thesis Preparation, one credit hour under each of the three members of the thesis committee. At least two months before submitting and defending the thesis, the student must present a progress report to the thesis committee orally and in writing.

By the end of his/her last semester, the student must have presented the research at a national meeting of a professional society (such as AIChE, ACS, ECS, etc.), at Discovery Day at USC, or at a comparable venue. The student must also submit a written thesis describing the research and defend it orally before the thesis committee. The defense must be announced at least one week in advance and be open to the general public.

Students who successfully fulfill all of these requirements with a GPA of at least 3.50 in the three hours of ECHE 497, 3.50 in all major courses, 3.50 in all engineering courses, and 3.50 overall, will be awarded their degree with “Distinction in Chemical Engineering” upon graduation.

Return to Programs by College/School Return to: Programs by College/School